
-

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-568

Phase I Report on a Cognitive Operating
System (COGNOSYS) for JPL's Robot

F. P. Mathur

(ASACR-128 34 6) A COGNITIVE OPERATING
(SYSTE (COGNOSYS) FOR JPL'S ROBOT. PHASE 1

YREPORT F.. Ma-thur (Jet Propulsion Lab.)CSCL 09B ncla
15 Sep. 19-72 35 p G3/08 4406

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 15, 1972

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICEU S Department of CommerceSpringfield VA 22151

TECHNICAL REPORT STANDARD TITLE PAGE

1. Report No. 33-568 2. Government Accession No. 3. Recipient's Catalog No.

4. Title and Subtitle 5. Report Date
September 15, 1972

PHASE 1 REPORT ON A COGNITIVE OPERATING
SYSTEM (COGNOSYS) FOR JPL'S ROBOT

7. Author(s) F. P. Mathur 8. Performing Organization Report No.

9. Performing Organization Name and Address 10. Work Unit No.
JET PROPULSION LABORATORY
California Institute of Technology 11. Contract or Grant No.
4800 Oak Grove Drive NAS 7-100
Pasadena, California 91103 13. Type of Report and Period Covered

Technical Memorandum
12. Sponsoring Agency Name and Address

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546 14. Sponsoring Agency CodeWashington, D.C. 20546

15. Supplementary Notes

16. Abstract

The most important software requirement for any robot development is the
COGNitive Operating SYStem (COGNOSYS). This report describes the Stanford
University Artificial Intelligence Laboratory's Hand/Eye software system
from the point of view of developing a cognitive operating system for JPL's
Robot. In this, the Phase I of the JPL Robot COGNOSYS task the installation
of a SAIL compiler and a FAIL assembler on Caltech's PDP-10 have been accom-
plished and guidelines have been prepared for the implementation of a
Stanford University type Hand/Eye software system on JPL-Caltech's computing
facility. The alternatives offered by using RAND-USC's PDP-10 Tenex operat-
ing system are also considered.

17. Key Words (Selected by Author(s)) 18. Distribution Statement

Computer Applications and Equipment Unclassified -- Unlimited
Planetary Exploration, Advanced
Artificial Intelligence

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 34

HOW TO FILL OUT THE TECHNICAL REPORT STANDARD TITLE PAGE

Make items 1, 4, 5, 9, 12, and 13 agree with the corresponding information on the
report cover. Use all capital letters for title (item 4). Leave items 2, 6, and 14
blank. Complete the remaining items as follows:

3. Recipient's Catalog No. Reserved for use by report recipients.

7. Author(s). Include corresponding information from the report cover. In
addition, list the affiliation of an author if it differs from that of the
performing organization.

8. Performing Organization Report No. Insert if performing organization
wishes to assign this number.

10. Work Unit No. Use the agency-wide code (for example, 923-50-10-06-72),
which uniquely identifies the work unit under which the work was authorized.
Non-NASA performing organizations will leave this blank.

11. Insert the number of the contract or grant under which the report was
prepared.

15. Supplementary Notes. Enter information not included elsewhere but useful,
such as: Prepared in cooperation with... Translation of (or by)... Presented
at conference of... To be published in...

16. Abstract. Include a brief (not to exceed 200 words) factual summary of the
most significant information contained in the report. If possible, the
abstract of a classified report should be unclassified. If the report contains
a significant bibliography or literature survey, mention it here.

17. Key Words. Insert terms or short phrases selected by the author that identify
the principal subjects covered in the report, and that are sufficiently
specific and precise to be used for cataloging.

18. Distribution Statement. Enter one of the authorized statements used to
denote releasability to the public or a limitation on dissemination for
reasons other than security of defense information. Authorized statements
are "Unclassified-Unlimited, " "U.S. Government and Contractors only,"
"U. S. Government Agencies only, " and "NASA and NASA Contractors only."

i9. Security Classification (of report). NOTE: Reports carrying a security
classification will require additional markings giving security and down-
grading information as specified by the Security Requirements Checklist
and the DoD Industrial Security Manual (DoD 5220. 22-M).

20. Security Classification (of this page). NOTE: Because this page may be
used in preparing announcements, bibliographies, and data banks, it should
be unclassified if possible. If a classification is required, indicate sepa-
rately the classification of the title and the abstract by following these items
with either "(U)" for unclassified, or "(C)" or "(S)" as applicable for
classified items.

21. No. of Pages. Insert the number of pages.

22. Price. Insert the price set by the Clearinghouse for Federal Scientific and
Technical Information or the Government Printing Office, if known.

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Memorandum 33-568

Phase 1 Report on a Cognitive Operating
System (COGNOSYS) for JPL's Robot

F. P. Mathur

JET PROPULSION LABORATORY

CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA

September 15, 1972

Ir

Prepare rnder Contract No. NAS 7-100
National Aeronautics and Space Administration

v X

./

i
//

-1 ',, PREFACE

The work described in this report was performed by the Astrionics

Division of the Jet Propulsion Laboratory.

JPL Technical Memorandum 33-568

PRECEDIFTfNG PAGE BLANK NOT FITMED

iii

Preceding page blank
CONTENTS

I. Introduction 1

II. Methodology 2

III. Overview of Hand/Eye System 3

A. Hardware Overview 3

B. Storage Requirements 4

C. Software Overview 4

D. Data Representation: LEAP Triplet Associations 5

E. Strategy or Control Program. 6

IV. Pseudo-teletypes 7

A. Hand/Eye PTY Mechanism Procedures 7

V. Global Model 9

A. Parallel Processing Using Spacewar Mode 9

B. Message Procedures and Forward MPs 10

C. Tracing 11

VI. UUOs, CALLs and CALLIs 12

A. Summary of Phase I 13

B. An Estimate of Phase II 15

Appendix A. Hand/Eye System Jobs 23

Appendix B. List of CALLI Symbolics 24

Appendix C. Trace of Hand/Eye System Execution 26

JPL Technical Memorandum 33-568 v

tifECEDING PAGE BLANK NOT FILMED

CONTENTS (contd)

FIGURES

1.

2.

3.

4.

5.

6.

Overview of the system.

Flow paths through Hand/Eye modules

HE monitor dispatcher, I/O, command decoder

flow diagram.

Simplified flow diagram of program control
(Instant Insanity puzzle)

Hand/Eye block structure

Message procedure trace

JPL Technical Memorandum 33-568

17

18

19

20

21

22

vi

ABSTRACT

The most important software requirement for any robot development is

the COGNitive Operating SYStem (COGNOSYS). This report describes the

Stanford University Artificial Intelligence Laboratory's Hand/Eye software

system from the point of view of developing a cognitive operating system for

JPL's Robot. In this, the Phase I of the JPL Robot COGNOSYS task the

installation of a SAIL compiler and a FAIL assembler on Caltech's PDP-10

have been accomplished and guidelines have been prepared for the implemen-

tation of a Stanford University type Hand/Eye software system on JPL-

Caltechts computing facility. The alternatives offered by using RAND-USC's

PDP-10 Tenex operating system are also considered.

JPL Technical Memorandum 33-568 vii

I. INTRODUCTION

The most important software requirement for any robot development

is what may be termed the COGnitive Operating SYStem (COGNOSYS). The

COGNOSYS is to be distinguished from the operating system of the host com-

puter on which the cognitive operating system is implemented and resides.

The JPL robot's sensory-motor functions consist of those corresponding to

stereo-TV cameras, range finder, arm(s), and vehicle drive mechanisms.

None of the robots either in existence or under current development, to the

author's knowledge, have this mix of effectors. The Stanford Research

Institute's SHAKEY has no arm. The Stanford University Artificial Intelli-

gence (A. I.) Laboratory's Hand/Eye (HE) system has no mobility. The

approach taken by these two centers of robotics in the development of cogni-

tive operating systems are distinctively different from each other. Stanford

Research Institute's SHAKEY has a cognitive operating system which is

designed around a theorem-prover (the QA3-STRIPS-PLANEX approach)

whereas the Stanford University A. I. Laboratory utilizes heuristic strategy

program to control the serial/parallel execution of a directory of special-

purpose subroutines (jobs, modules), where each subroutine, for example,

may be a directive for a specific operation on the robot's subsystem.

This report formulates a methodology for developing a cognitive

operating system and describes the Stanford University A. I. Laboratory's

HE system from the point of view of developing cognitive operating system

for Jet Propulsion Laboratory's robot breadboard. In the Phase I of the

COGNOSYS task the installation of a SAIL compiler and a FAIL assembler on

Caltech's PDP-10 have been accomplished and guidelines set forth for the

implementation of a Stanford-type HE software system on JPL-Caltech's

computing facility. The alternatives offered by using RAND-USC's PDP-10

Tenex operating system is also considered.

JPL Technical Memorandum 33-568 1

II. METHODOLOGY

The methodology for the development of JPL robot's cognitive

operating system (COGNOSYS) from what was evident at the inception of this

project to what has evolved to date may be expressed thus: There was no

intention to be restricted to in-house capabilities alone but rather to acquire

as much benefit as possible by interacting with nationally known artificial

intelligence centers. These benefits would constitute in the awareness of the

latest developments relating to cognitive operating systems and in broaden-

ing the knowledge base of JPL researchers.

Specifically, these interactions would result in the importation of

artificial intelligence specific programming language compilers, assemblers,

and utility routines. They would also result in the understanding of

COGNOSYSs existing or under development at other centers, in the importa-

tion of these cognitive operating systems followed by in-house experimenta-

tion with them. This understanding and experimentation (either at JPL or at

site of origination) coupled with the JPL specific robot requirements would

lead to the modification and extension of these (imported) packages to fit the

JPL robot's needs.

Should it be indicated, in the course of the study, that the effort

required to modify and extend these packages is not commensurate with the

effort required to develop these software packages from functional descrip-

tions and flow charts, then requisite steps would be taken to seek an inter-

mediary balanced approach. Such decisions may come about due to

incompatibilities of host machines, time-sharing systems, and availability

of compilers. Should the host machine compatibilities be of a marginal

nature then intermediary steps, between the extremes of: (1) direct import

and translation, and (2) total in-house specified development, are indicated.

That is to say, the task will comprise some of those imported packages that

are directly utilizable, those that will be utilizable after some modification,

other packages that may not thus be utilizable but must be developed and

written from basic specifications, and packages which do not exist anywhere,

are JPL specific, and hence must be developed here (e. g., those relating to

a robot functioning in a Mars environment).

JPL Technical Memorandum 33-5682

III. OVERVIEW OF HAND/EYE SYSTEM

The HE system consists of a group of jobs which are all constrained to

some particular conventions (Fig. 1). These conventions enable communica-

tion of data and control information among the jobs. For the purpose of

clarity, these separate jobs may also be referred to as modules. Each

module represents a logical physical section of the HE system.

All of these modules are run as pseudo-teletype (PTY) jobs under the

PDP-10 timesharing system. The user is provided with a teletype (TTY)

controller which is responsible for communicating with the various modules

in the system. The TTY controller allows commands to be passed to these

modules and allows output from the modules to be shown to the user.

The PTY mechanism is used for controlling the modules to accommo-

date the timesharing system (e. g., logging in, executing system commands,

etc.). Since this is not a practical way of communicating large quantities of

data, another mechanism has been provided for making data available to all

modules and for communicating data between modules. This mechanism

makes use of the second segment on the PDP-10. All modules share a

common second segment which contains the SAIL routines and global data

storage space.

Since the second segment is common to all modules, it may also be

used for passing information from one module to another. This information

is passed in the form of ''messages' which resemble SAIL procedure calls.

Messages promote a means for passing data and for requesting executing of

so-called "message procedures" in the various modules.

A. Hardware Overview

The HE system's visual input is accomplished by using a commercial

TV camera. The camera has a four-lens turret, a four-position color wheel

in front of the vidicon, a pan-tilt head, focus, and target voltage all under

program control. The arm is powered by small electric motors mounted on

it. Each of the joints has a potentiometer mounted on it to provide position

feedback. The hand is a two-finger parallel grip device. The TV and arm

are connected through analog-to-digital converters to a Digital Equipment

JPL Technical Memorandum 33-568 3

PDP-6 and a PDP-10 computer linked together and sharing 128K of core

(which has recently been augmented to the full 256K of core).

All analog-to-digital and digital-to-analog convertors interface with

the PDP-6. All I/O devices between the HE and computing system are

attached to the PDP-6. The PDP-6, in general, is used for real-time

applications such as servoing the arms, changing lenses, changing color

filters, pan, tilt, etc.

B. Storage Requirements

The approximate estimate on storage requirements for the assembler,

compiler, jobs, global segment, and HE monitor are the following:

FAIL assembler 19 to 42K

SAIL compiler 23 to 50K

HE defined jobs 40K and more

Global models and run

time routines 27K

Other storage allocations 3 to 4K

HE monitor 6K

C. Software Overview

The HE system runs under Stanford's PDP-10 timesharing system,

which has been modified to enable the HE system to function in a timesharing

environment. The HE system is partitioned into many intercommunicating

modules. Each module runs as a separate job under the PDP-10 timesharing

system. This division alleviates job sizes limitations. It also allows the

timesharing scheduler to overlap computation-limited operations like arm

servoing. There are, however, two inefficiencies associated with the use of

multiple jobs to avoid core overlays; one in the overhead of trapping and

routing I/O from all jobs through a single terminal. The second is the

difficulty of bringing task-dependent strategies to bear on scheduling

decisions.

Most of the HE system is written in SAIL (except for the run-time

routines which are mostly in FAIL). SAIL is an ALGOL-like language which

JPL Technical Memorandum 33-5684

contains the LEAP associative processing language. To enable various

sections to run asynchronously, and to fit it into core, the system runs as

eight separate programs. The PDP-10 has two relocation registers, allow-

ing a program to be in two disjoint segments in core. One of these segments,

known as the upper segment, is common to all the programs and contains

reentrant subroutines common to all programs. In addition, it contains data

which provides a complete global model of the world as it is known to the

system at any given time. This model is generated by the lower segment

programs and can be interrogated by them. It is predominantly in the form

of LEAP associations.

The HE monitor (which resides in the lower segment) is the only pro-

gram that communicates directly with the operator. It activates PTYs and

logs in jobs through them. All characters sent to a PTY by the monitor go

to the teletype input buffer of the job attached to the PTY, and any teletype

output from a job is available to the monitor. The monitor also contains

facilities for directing teletype input to the proper job, outputting teletype

output from the jobs to the operator with the job identified, tracing the

teletype I/O and message procedure calls for debugging, and setting up and

controlling the other jobs. Jobs may also activate a message procedure in

the monitor to send commands to it (Figs. 2 and 3).

D. Data Representation: LEAP Triplet Association

An important form of storage of item instances is the association,

or triple. Ordered triples of item instances may be written into or retrieved

from a special store, the associative store. The method of storage of these

triples is designed to facilitate fast and flexible retrieval. A triple is

represented by:

Attribute G Object _--Value

where A, O, and V are items or item vars and are mnemonics for attribute,

object, and value, respectively.

JPL Technical Memorandum 33-568 5

Examples:

(1) BLOB (TABLE [i,j] - blobs known to be in area where

TABLE is an item var array (whose indices are X/4, Y/4 where

X and Y are in inches and are table coordinates) and where

BLOB is the set of connected edges traced by the edge follower

(it may be one or more objects).

(2) COLOR 5 CUBE -- RED

which reads "color of cube is red."

(3) COLOR Q ? - RED

which defines the set of all red objects.

E. Strategy or Control Program

The heart of the HE system is the control program. The control

program sequences the various tasks, attempts error recovery, generates

displays, and has provision for running parts of the system by themselves

for debugging. The strategy or control program that exists at Stanford

University is a program that enables the HE system to autonomously solve

the "Instant Insanity" puzzle (Fig. 4). The puzzle consists of four cubes,

each with faces variously selected from four colors: white, blue, red, and

green. To solve the puzzle, the blocks must be stacked so that each of the

four sides of the resulting tower reveals only one face of each color.

Determining the orientation of the cubes in the tower is normally quite

difficult for humans. For the computer this is relatively easy. Most of its

time and effort is spent in locating and identifying objects, determining the

colors of the faces, and, having found the final orientation, deciding what

arm motions are required to physically produce the tower.

JPL Technical Memorandum 33-5686

IV. PSEUDO- TELETYPES

A PTY is an artificial construct within the system to allow users to

have and control more than one job at a time. If you do output PTY, it is

as if you were sitting at a teletype typing those characters that you outputted.

The PTY reads your characters just as a regular teletype does. If you send.

the character "Login" followed by a carriage return, line feed. to a PTY, it

will log in a job just as if you had typed that to a teletype. The PTY will then

type back the duplexing of what you typed as well as the usual message the

system puts out when someone logs in.

The job which initiates a PTY owns it uniquely, and. no other job may

appropriate that PTY. Using the PTY unused operations (UUOs) one can

accomplish from a program anything one can from a command by sending the

command to the monitor and, performing a PTY UUO with the line number set

to zero. That is to say, if you perform a PTY UUO with the line number in

ADR set to zero, it is as if the user had. typed those characters you outputted.

Thus, a job can stop itself by sending control-C to line number zero.

A. Hand/Eye PTY Mechanism Procedures

The program designed to handle PTYs for the HE system (Fig. 5)

consists of the following procedures:

DPYC

S.

TI

CLEAR: Turn off display frame, put out by job I (3 displays

only for now).

DOIT: Procedure to set and reset flags (used in command

decoder).

CORE: Procedure to determine job size.

TRTST: Procedure to indicate when string space nearly em]

IMOUT: Procedure to output millisecond time as MIN; SEC;

FRACTION.

FORM: Procedure to format strings.

pty.

JPL Technical Memorandum 33-568 7

TRACE: Message procedure tracing functions:

GETVAL

GETREAL

GETSTRING

GETBITS

GETARGS

MON-COM: Procedure to send commands to the monitor from

the jobs.

SCANLOOP: Procedure to scan the TTY and all the logged in PTYs

to see if there is input waiting, and to take appropriate

action.

TYPEX: Procedure which types all strings to TTY; it handles

suppress and trace processing.

Procedures to help control the PTYs:

HALT:

SEND:

SNARF:

SNARFMON:

WAITI:

COMSCAN:

COMMAND:

Halts the job ID number in COMJOB.

Sends strings at the PTY for a job ID number.

Waits until a certain character is seen from that PTY.

Arranges for that PTY to be in monitor mode.

Waits for a character from a given PTY and returns it.

Command scanner. It is called if the scanner loop

detected that there was input from the TTY. It checks

to see if there is a new job destination and, if so,

stores the logical name. If there is a command, the

logical name of the destination and the job ID number

are stored. If there is no command, the line is typed

at the appropriate PTY job.

Command decoder. It is called by COMSCAN if a

command is detected. This parses the command, looks

it up in the command table, and may then parse argu-

ments to the command. The command name and parsed

arguments are stored in ARGS array. Then dispatch

is made on the command number for the command.

This dispatch is in the form of one big case statement.

JPL Technical Memorandum 33-5688

V. GLOBAL MODEL

The HE system is composed. of several distinct jobs or modules all

running independently for the purposes of the time-sharing system. How-

ever, these modules will actually be about one common task, are able to

communicate with each other. This communication is implemented in two

ways: a global data space located in a second segment shared by all the

hand/eye modules, and. a facility for passing messages between the modules.

All HE modules have access to all the data stored in the global area.

The declarations for global data are all included. in a declaration tape that

precedes the SAIL compilation of each module. This insures that space is

allocated such that each separate module knows the same name for a given

price of global data (thus avoiding the FORTRAN COMMON problem).

The contents of the global tape are arrived at by agreement and. precede

each SAIL compilation to be loaded as part of the HE system.

A. Parallel Processing Using Spacewar Mode

Spacewar mode is essentially a parallel process. A job designated in

Spacewar mode and started up runs independently from the main job.

One of the important points in a timesharing system is that users'

requests for time are scheduled. As a user uses more and more time, his

priority goes down and. he gets larger and. larger time slices. However,

completely invisible to the user, his program gets shut off periodically to

allow other users to run. This means that no user gets continuous service,

but they all get interrupted and shut off periodically. There exists a need.

for perfectly regular service; e. g. , if the SU's hydraulic arm were in oper-

ation, a shutdown of any length would cause the arm to wilt. It is for this

reason that a mode of operation exists that guarantees perfect (almost)

regular service - namely, the Spacewar mode.

When a Spacewar job is initiated, the initiator specifies the time

intervals between startups. The Spacewar job will be started from the

beginning after that amount of time. While the Spacewar module is active,

this job is locked into core and may not be swapped. out.

JPL Technical Memorandum 33-568 9

B. Message Procedures and Forward Message Procedures

Message procedures (MPs) provide a mechanism for communicating

among the various modules of the HE system. Each of these modules

communicate with the common second segment, hence the intra-module

communication paths are established in that segment.

Messages are passed back and forth in the second segment. The

history of a message may be some subset of the following sequence:

(1) Message is composed.

(2) Message is put in sequence.

(3) Message is 'sent.''

(4) Wait for completion of the message.

(5) Activate the message (call the procedure).

(6) Acknowledge the processing of the message.

(7) Kill the message.

The capability is needed to send messages that have SAIL-like data

associated with them. It is not desired to convert all message data to some

symbolic form and (say) write a disk file with that text, but instead to pass

data of all types (sets, items, arrays, integers, reals, etc.) in a reasonably

efficient manner. At the same time it is desired that programs do not have

to explicitly type-check message data or explicitly have to do "get this datum"

operations.

A mechanism which meets the above requirements is already in SAIL;

namely, actual parameter passing to procedures. A message, then, will

consist of a name of a procedure and a parameter list to pass to that proce-

dure for evaluation, together with some bookkeeping information. The

user is allowed to specify a symbolic source and a symbolic destination of the

message. These names specify the module to be activated (i.e., the recipi-

ent of the message), and the source module.

Thus a mechanism is implemented for a user in one module to emit

calls to procedures actually located in another module. The matching and

passing of formal parameters is handled in much the same way as for

ordinary procedures. Of course, the calling module must have declared the

names and parameter lists of the procedures it is calling. These

declarations will be in the HE definition tape and will look like ordinary

JPL Technical Memorandum 33-56810

procedure declarations, except that the words FORWARD MESSAGE

PROCEDURE appear.

A mechanism must be provided in the module in which this procedure

is actually located in order to allow this procedure to be evaluated for each

message passed to it. It could be arranged that whenever a message

specifying the evaluation of some procedure was passed to a module, that

module is interrupted and the message request honored. But this is unthink-

able, for many reasons. First, the module should control the priorities

with which messages are evaluated. Second, it would be objectionable to

suspend the module in the midst of a computation which has left an incon-

sistent view of the world in its data structures.

To rectify this, a module must specifically receive messages, and

must request the evaluation of the specified procedure. Briefly, a module

may look around in the list of messages in order to locate one destined for

itself. It may then request that the message be activated, i. e. , evaluate the

procedure which is located in the module reading the message and which has

the same name as the "procedure name" specified in the message. This

evaluation is performed with the arguments as specified in the message.

Normally, when the procedure exists, the message is acknowledged (i. e.,

the calling module may now determine that the message has completed).

C. Tracing

There is a facility for tracing messages passed from one job to another

(Fig. 6). This facility is actually handled by the same program which

handles the TTY-PTY operations. A trace consists of a type-out at the

controlling TTY of the form: "time MESSAGE TRACE: source destination

message-procedure-name args" where time is in milliseconds since mid-

night. Args is a list of argument data for the message procedure. The

mechanics of tracing are that there is a global variable in the second seg-

ment called TRACING. If it is set non-zero, message tracing is enabled.

Every time a message is sent by the message handler, a trace message is

first sent to the tracing job. When the tracing message is acknowledged, the

original message is finally sent to its prescribed destination. An example

of a trace that was conducted on the HE system is included in Appendix C

of this report.

JPL Technical Memorandum 33-568 11

VI. UUOs, CALLs, AND CALLIs

The unused op codes from 040' to ,077 (in octal) are not used by any

instruction and are made use of to communicate with the monitor. These

are the UUO codes. An UUO is an instruction which is executed by the

system instead of by the computer. These UUOs are used for such functions

as to initialize devices, to set up buffer rings, to manipulate files, to make

data transfers, to terminate I/O, and to deal with specific I/O devices such

as teletypes, magnetic tapes, display units, and DECtapes. Op-codes 0'4/

through 077 and 000 trap to absolute location 40, with the central processor

in executive mode, and these programmed operators are interpreted by the

monitor to perform I/O operations and the functions in the foregoing

description.

The previous paragraph described functions of the monitor UUOs.

There are also User UUOs, which are op-codes 001 through 037, and which

allow the user program complete freedom in the use of these programmed

operators while not affecting the mode of the central processor.

Op-codes 040 through 077 limit the monitor to 408 operations. The

UU0 040, which is the CALL operation, extends this set by specifying the

name of the operation by the contents of the location specified by the effective

address. This capability provides for indefinite extendability of the monitor

operations.

However, the CALL mechanism introduces an overhead cost of a table

lookup to the monitor. Thus there is a programmed operator extension of

the UU0 047 referred to as CALLI. The CALLI operation eliminates the

table lookup of the CALL operation by having the programmer or the assem-

bler to perform the lookup and specify the index to the operation in the

effective address of the CALLI AC, N instruction, where N is an index to the

operation.

The PDP-10O operating system of the Stanford University A. I. Labora-

tory recognizes CALLIs up to N = 41 as standard, i.e. , these were the

standard CALLIs that came with the operating system supplied to them by

DEC. These CALLIs (also loosely referred to as UUOs) have been extended

by Stanford; i. e., new ones have been defined. In fact, 46 new CALLIs have

been defined, bringing the total to 87.

JPL Technical Memorandum 33-56812

However, in the meantime DEC has not been idle, and in their new

versions of their PDP-10 operating system (50 series) 107 CALLIs are

defined, i.e., sixty-six new CALLIs have been defined since they supplied

their operating system to Stanford. No doubt the impetus to do this may

have well come from the ideas developed by Stanford.

Nevertheless, in performing the task of developing an HE-type monitor

at JPL by "fitting" the Stanford HE monitor to Caltech's PDP-10, the avail-

ability of these new CALLIs is significant. These new CALLIs can now be

used to replace many of the Stanford specific ones; e.g., DEC's CALLI

AC, 60 has the function of locking jobs in core so that they may not be swapped

out, whereas Stanford has a number of SPACEWAR UUOs (see Subsection V.A)

that perform functions toward similar objectives.

In summary, although DEC now provides CALLIs that are similar

to those developed at Stanford thus making "translation" to Caltech's PDP-10

easier, it should be noted that they are only functionally similar and may not

necessarily enable simple direct replacement. This issue will be investigated,

in Phase II of this task.

A list of Stanford's standard DEC CALLIs as well as their own defined

CALLIs is attached in this report (Appendix B).

A. Summary of Phase I

The two major trends in cognitive operating system design were

referred to in the introduction, namely Stanford Research Institute's theorem-

prover-based QA3-STRIPS-PLANEX approach and the Stanford University

Artificial Intelligence Laboratory's approach, which is to use a heuristic

strategy controller of a directory of jobs.

Initially some effort was made to survey theorem-proving techniques

and theorem-prover-based question-answering systems. Along these lines

the QA 3. 5 package developed by Cordell Green and associates at Stanford

Research Institute (SRI) was obtained and installed on Caltech's PDP-10.

After very little experimentation it was evident that theorem-prover-based

deductive systems are indeed very slow. Their strength lies in powerful

deductive capability on deep but narrow searches. For broad axiom bases

JPL Technical Memorandum 33-568 13

the inference space rapidly gets out of hand, thus reducing speed and

requiring large amounts of core storage.

The QA 3. 5 package is on Caltech's System directory and is available

to anyone with a valid account number to the PDP-10.

Due to the above limitation of theorem-prover-based systems and also

due to the broad general requirements for the JPL-Robot's Mars application,

along with the consideration that the Stanford University's Shineman arm is

being acquired for the JPL-Robot the decision was made to pursue Stanford

University A. I. Laboratory's approach. Along this line an effort was initiated

to study their system and bring the HE system in-house for experimentation

and extension.

Toward this goal a SAIL compiler and a FAIL assembler were installed

on Caltech's PDP-10 and are currently being used to gain proficiency in their

usage.

The greater part of this report attempts to document the Stanford

University A. I. Laboratory's HE system. A summary list of items accom-

plished in Phase I of this study are:

(1) Investigated theorem-proving techniques.

(2) Investigated question-answering systems.

(3) Acquired SRI's QA 3. 5 program and make it operational on

Caltech' s PDP-10.

(4) Experimented with QA 3. 5 at Caltech.

(5) Investigated English language (a subset of the natural language to

first-order predicate calculus translators for the purposes of

having more convenient front-ends to question-answering systems.

Acquired tape of Stephen Cole's ENGROB (English Robot) program

from SRI.

(6) Investigated problem-solving programs such as SRI's QA4 and

Carl Hewitt's PLANNER at MIT. Obtained, a tape of ; version of

Terry Winograd's implementation called MICROPLANNER.

(7) Investigated PDP-10 Tenex operating system, paging capabilities,

fork structure, and communications capabilities.

(8) Investigated Caltech's version 5 PDP-10 operating system.

(9) Initiated dialog with Stanford University A. I. Laboratory personnel.

JPL Technical Memorandum 33-56814

(10) Formulated methodology for developing a cognitive operating

system for JPL Robot.

(11) Acquired documentation on Stanford's HE system based on PDP-10

and PDP-6 computers.

(12) Acquired computer listings of HE monitor, global segment run

time routines, and message procedures.

(13) Acquired mag tape of the complete Stanford HE system.

(14) Made listings of the HE system tape at JPL.

(15) Acquired tapes of DECUS's version of SAIL and FAIL.

(16) Made SAIL and FAIL operational on Caltech's PDP-10.

(17) Documented the salient features of Stanford's HE system for the

purposes of importation to JPL.

(18) Formulated guidelines for Phase II and estimated magnitude of

manpower requirements for the completion of this task.

B. An Estimate of Phase II

During Phase I, the general problem solving area was surveyed for

applicability to the development of a cognitive operating system for the JPL-

Robot. The emphasis was placed on bringing in-house Stanford University

A. I. Laboratory's HE software system. Toward this end the HE system was

studied in some detail, and the software infrastructure (SAIL compiler,

FAIL assembler, etc.) was established on Caltech's PDP-10.

Along with the acquisition of an understanding of the HE system,

Digital Equipment Corporation's latest 5 series version operating system

was studied. This revealed that many of the features, such as TTYs, upper

segment writability, and special CALLIs which were pioneered at Stanford,

have now been incorporated into the Standard 10/50 DE;C operating system.

Thus the operating system of Caltech's PDP-10 makes available to the user

the PTY mechanisms, provides the capability to remove write protection

from upper segment under program control, and. provides an extended. set of

CALLIs. These extensions of DEC's capabilities make the implementation

of Stanford's HE system at Caltech quite feasible.

Thus, of the primary modules of the HE system, the one that will

require the most effort will be in the implementation of the "message

JPL Technical Memorandum 33-568 15

procedure" mechanism (which enables jobs to communicate with each other

via the global segment).

It is recommended that the transition first be made to the standard

10/50 PDP-10 system. Once that is accomplished, then operation of the

system under Tenex 10/50 compatibility mode (either in BBN's Tenex or

under Tenex mode of DEC's KI10) should be initiated. The next step should

be that of rewriting the system to make use of Tenex's paging features, fork

communications, and backtracking capabilities.

The manpower requirements for Phase II of this task, i. e., to have an

operational HE-type software system on the PDP-10 in the Booth Computing

Center at Caltech is estimated to be between 3 and 6 man-months now that a

clear understanding of Stanford's HE system has been gained and the software

infrastructure to do the job has been established.

JPL Technical Memorandum 33-56816

USER'S CONSOLE

I
TRACE
OUTPUT

CONTROL

ARM SERVO

ARM SOLUTION

COLOR FINDER

BODY RECOGNIZER

EDGE FOLLOWER

CURVE FITTER

CAMERA MODEL

ERROR MESSAGES AND
TRACE OUTPUT

MAIN
PROGRAM
(LOWER
SEGMENT)

PSEUDO-
TELETYPE
LINKS

SUBJOBS
(LOWER
SE GME NTS)

MESSAGE
PROCEDURE
LINKS

UPPER
SEGMENT

Fig. 1. Overview of the system

JPL Technical Memorandum 33-568

I/O

S
W

M I
O T
N C
I H
T I
O N
R G

MESSAGE
PROCEDURE
ROUTINES
(ACCESS
BETWEEN
LOWER
SEGMENTS)

GLOBAL
MODEL
(DIRECT
ACCESS
FROM
EACH
LOWER
SEGMENT)COMMAND

DECODER

< *[I<

4 *L

17

I-<
Uz
o

O
'-

uO

0uj

'
I)

L
-

U

<

o
>

C
A

.
<

LU

-

>
W

0Y
V

)

ii

I
I

I
I

LALivpnsn IO
N in

) S
O

N
llS

 OSIY
(11>1

.6-a) SO
N

VW
W

O
D

S
1

J >ISC
01s 301 'l1

JP
L

T

e
c
h
n
ic

a
l M

e
m

o
ra

n
d
u
m

 3
3
-5

6
8

ZOF-

uO<

a

z
o

7-

Z
O

LuZ-uJ

C
A

L
U

1...

rU

-4D., 0100f--

I
I

18

0

Q
U

L

o
<

U

z<

<
O

z

L
U

0U0(AC
L

C
L

0I-I:I

Z
-E

o

U

LU
Z

j
<

U

zoiZ

oiU

L
L

V

bd

Id0-4qao 0o H0)

:lo ., C
0

JP
L

T

e
c
h

n
ic

a
l M

e
m

o
ra

n
d
u
m

 3
3
-5

6
8

19

-4 atNN.-
q

. U
)

0U
)

0"4r.C;-4,

I .H-4U
)

JP
L

T

e
c
h
n
ic

a
l M

e
m

o
ra

n
d

u
m

 3
3
-5

6
8

t>L
L

20

HE PROGRAM

2
DPYCLEAR

DPYCLEAR
DOIT

DOIT
CORE

CORE
STRTST

STRTST
TIMOUT

TIMOUT
FORM

FORM
TRACE

213 - START ADDRESS
223 - END ADDRESS
225
239
242
249
253
263
265
270
273
274
279

GETVAL 282
GETVAL 286

GETREAL 287
GETREAL 291

GETSTRING 292
GETSTRING 315

GETBITS 316
GETBITS 328

GETARGS 329
GETARGS 347

TRACE 351

MON. CO 353
MON. CO 358

SCANLOOP 360

SCNJOB 368
SCNJOB 399

SCANLOOP 459

TYPEX 461

OUTW 465
OUTW 468

TYPEX 476

PROCESS-STRINGS 478
PROCESS-STRINGS 486

SEND 488
SEND 498

SNARF 500
SNARF 504

SNARFMON 505
SNARFMON 522

WAITI 523
WAITI 532

HALT 533
HALT 546

COMSCAN 548

LOOK F 578
LOOK F 602

COMSCAN 603

CVSTRX 605
CVSTRX 610

COMMAND D 612

TRAC 617
TRAC 624

MIN 625
MIN 626

C02 658

CO3 662
C 03 676

C02 678

LOG 710
LOG 765

KJOB 768
KJOB 778

UPD 832
UPD 847

COLECT 880

SCAN
SCAN

COLECT

STAT
STAT

DUMP
DUMP

DPYOFF
DPYOFF

COMMAND

888

1034

882
885

946
973
999

1025
1027
1031

1090

Fig. 5. Hand/Eye block structure

JPL Technical Memorandum 33-568

HE

HE

21

FIRST MESSAGE
PROCEDURE

SECOND MESSAGE
PROCEDURE

Fig. 6. Message procedure trace

JPL Technical Memorandum 33-56822

APPENDIX A

HAND/EYE SYSTEM JOBS

The eight major jobs defined in the Hand/Eye system are the following:

EDG: Edge follower scans the TV's field of view, using a coarse

raster, looking for edges. It then traces around the edges to

find outline of object.

SIM: Simple body recognizer. It gets the corner coordinates of the

objects in the global model and applies various tests to obtain

a prediction as to what the object may be.

CAM: Changes the status of the TV camera, e. g., change lens, pan,

tilt, pan and tilt, focus, focus and pan, focus and tilt, focus,

pan and tilt, center.

VER: The verifier is called to determine whether or not an edge or

line exists between TV coordinates (X1, Y1) and (X2, Y2).

The value of the procedure is the confidence of the program in

the existence of an edge.

COL: This procedure finds the colors of the visible face of each

object.

DRV: Arm driver. The potentiometer readings generated by the arm

solution program are obtained and the arm joints are servoed.

GUN: Driver for the region finder which prepares blobs for COMPLEX.

CUR: Curve fitter driver which tries to curve fit a set of blobs.

JPL Technical Memorandum 33-568 23

APPENDIX B

CALLI SYMBOLICS

DEC STANDARD

CX RESEfT, RFSTUUO
CX ODTIN ,ITT
CX SETouDfSETDOT
CX DLiTOUT, DDTOLJT
CX D)F C;iF' ,3\!C "HP
C X U)ITGT, Cf'CFPJ
G:X f ET(: CH, DVCHR
C(X ,D[iTf:L., CPOPJ
CX WtIT,W.IT
CX CORE,CORUUC
C'X EXIT,FXIT
C X UTPCL ', UTF CL R
('X DATE,UATE
CX LOGIN,L.OSIN
CX APRENP,APRENH
CX LOGOUT,LOGCCIT
C.X SWITCH,S'ITCH
CX REASSIGN,REAS!;Ir-;r
CX TIM.ER,TIMER
CX M';TIMF,MSTI IE
(X G. T P P,; GETPFN
CX TRPSET, IJUOERR
CX TRPJEN, UU(ERfp
(,X RUNTIMJC ITI I
CX PJO[., JOHNO
;X SLEEF',SLEEP

CX SETPOV, STpOV

CX PLEEK,PEEK
CX GETLIN,GETLN
CX RUN,U;JOERR
(,X SITlJWP, Setuwp
CX REMAP,remap
CX GETSLG,UUOERP
L(X GETTA, UUDERR

;I0 RESET IO
;i EXt-GET DT CHAR.
;2 SETJDT LJC IN PROTECTeD JIB DATA
;3 'EXT:SE.ND DT CHAR,
;4 DEVICE CHARACTISTICS
;5 GCT DOT MOfDE
;5 DEVICE CHAR,(PIFF, NArE)
;7 RELEASE I)nT MD3E
;1U 'AIT TILL DEVICE INACTIVE
; 1 CORE UUL
;12 . XIT
;,3 rLEAR DEC TAPE DIRLCTOY
;i. 4 GET DATE
;i15 LOGIN
;16 ENABLE APR FOR TRAPPING
;17 LOG;OUT
;;. RETrURN DATA SWITCHES
;i "CE'SSIGN DEVICE TO A.NOTHER JOB
;/2 RETURN JIFFY CLOCK TIME
;5:. PETURN TIME or DAY IN IS
;:4 RETURN PROJLCT-pROGRMHlER .IJMBER
;25 SET PI TRAP LOC, AND USER I O

;2b DISMISS INTERRUPT TO EXEC MODE
;27 RETURN TOTAl. JOB RUNrING TIME
;30) RETURN JOB NJ:'1tEq
;.31 SLEEP FOR N SECONDS, TWEN RETURN TO USER
;32 SET PUSH DOWN OVERFLIW TRAP
;(FOR COMPATIBILITY ONLY)
;33 PEEK INTO SYSTEM CORE, ;JS
;34 GET NAME OF TTY
;35 RUN COMMAND
;36 SET USER WRITE PROTECT
;37 REDO CORE MAP
;4AF GET SE MENT
;41 GETTAB ILLEGAL AT STANFOPD,

STANFORD DEFINED

SPCUAR,SPCWAR
CTLV,CTL'V

ETINA M,SETNAM
SPCWGO,SPCWGO

;O READ SWITCH REGISTER IJS

11 PUT TTY IN NON-DUPLEX MODE,
;2 SET JOB NAME FOR SYSTAT
;3 ANOTHER SPACEWAR UUO

JPL Technical Memorandum 33-568

II
Edu

`0 U

1'D

Liit11

Qp-l

CX

CX
CX
cX

;JS

24

CX SAP, SYSqJ9

CX EIOTM,EIOTM
CX LIOTM,LIOTM
C X PNAE , orNA 4E
UX UF3GET,UFRGET
'X UFBGIV,UFRRGIV
CX LJFBCLR, FBLUSH
CX J3TSTS,USTAT
CX TIYIOS,TTYIOS
CX core2 ,core2
CX attsec,attseg
CX letseg,detseg
CX set'ro,setpro
Cx Segnum, seqnum
CX egsi z,seqslz
X I Inkun, linkup
CX dlsmls,d;smls
CX Intnb, ntnb
CX Intorm,intorm

InX Intacm, intac
iX intns,intris

(,X intllP,intilp
I:X Intl rl, nt ra

CX Intuen,intgen
CX uwalt,jwalt
CX debraakdebreak
CX settnrr,?, se tnm2
CX segnan, tsegn. m
CX IWAIT,!WAIT
CX usklDusklp
Cx ouflen,buflen
CX namein,naneln
;x slevelsetlvl

CX ienbw, ienbw
CX runmsk,runmsk

I T

;4 RUN A JOB
;5 ENTER lOT USER MODE
;6 LEAVE IOT USER MODE
17 GET A DEVICE'S PHYSICAL NAME
;10 GET A FAST BAND
;ll RELEASE A FAST BAND
;12 RELEASE ALL FAST BANDS
;13 GET JOB STATUS WORD OF A JOB
;14 GET A JOb'S TELETYPES STATUS WORD
;15 Funny cor

e
UU1 for high segments

;16 Attach high segment
;17 Detach high segment
;20: Change protection of high segment
;21 get number of high segment
;22
123
;24
:25 enable Interrupts
;26
;27

;31
;32
;33 generate an Interrupt
;34
;35
;36 set name of upper, If any
;37 get name of upper, if any
;40
;41 Skip if a UWAIT really has to wait.
;42 Return buffer length for a device
;43 See if this Job name exists
;44 Set or get service level,
;45 Enable interrupts and immediately go into
;46 Sets processor run mask wait state

JPL Technical Memorandum 33-568 25

APPENDIX C

A TRACE OF HAND/EYE SYSTEM EXECUTION

29 Mar 1972

TTY4MON DISKIN
DISK*MON
DISK4MACR
DISK4MACR
DISK4MACR
DISK*MACR
DISK4MACR
MON4TTY EDGRUN
DISK*MON
DISK*MACR
DISK*MACR
DISK*MACR
DISK*MACR
DISK*MACR
MON4TTY CURRUN
DISK4MON
DISK*MACR
DiSK*MACR
DISK4MACR
DISK*HACR
DISK*MACR
MON4TTY CAR-UN
DISK*MON
DISK MACR
DISK*MACR
DISK*MACR
DISK4MACR
MON*TTY IIRUN I
DISK4MON
DISK4MACR
DISK*MACR
DISK*MACR
DISK4MACR
DISK4MACR
MON4TTY SIMRUN
DISK*MON
DISK4MACR
DISK4MACR
DISK4MACR
DISK*MACR
DISK*MACR
MON*TTY COLRUN
DISK*MON
DISK4MACR
DISK*MACR
DISK*MACR
DISK*MACR
DISK4MACR
MON*TTY VERRUN
DISK*MON
DISK*MACR
DISK*MACR

14109 TRAC53,DBGC2,KKP]

HEMACRIIP,HE3
DEFINE EDGRUN
EDGiLOG
EDGIRUN DSK EDGECII,HEJ
EDG;GATER
DRVI

DEFINED
DEFINE CURRUN
CUR!LOG
CURIRUN DSK CURVECII,HEJ
CURIGATER
DRVI

DEFINED
DEFINE CAMRUN
CAM:LOG
CAMH:RUN DSK CAMERACII,HE3
CAM;GATER
DRVI

DEFINED
DEFINE IIRUN
DRViLOG
ORVIRUN DSK IIDRVEII.HE3
ORVIGATER

DEFINED
DEFINE SIMRUN
SIMsLOG
SIMsRUN DSK SI
SIMIGATER
DRVi

DEFINED
DEFINE COLRUN
COLtLOG
COLIRUN DSK CO
COLiGATER
DRVI

DEFINED
DEFINE VERRUN
VERILOG
VERiRUN DSK VI
VERIGATER
DRVI

IMPLECII,HE3

OLORCII.HE3

ERIFYCII,H£E

DEFINED
DEFINE HANDRUN
HANDILOG
IRUN DSK HANDCIIHEj

JPL Technical Memorandum 33-56826

DISK*MACR
DISK4MACR
DISK*MACR
MON*TTy HANDRUN
DISK*MON
DISKoMACR
DISK4MACR
DISK4MACR
DISK*MACR
DISK4MACR
MON4TTY MOVERUN
DISK4MON
ODISK4MACR
DISK*MACR
D-ISKKMACR
DISK*MACR
MONoTTY SETUP DE
DISK MON
DISK4MACR
DISK*MACR
DISK*MACR
OISK*MACR
DISK4MACR
DISK*MACR
MON*TTY ANDY DEF
MON4TTY END DISI
TTY*MON SETUP
MACR4MON
MACR4MON
HACR4ORV
MACR*DRV
MON4TTY DRV LOGI
DRV4TTY
MACR*MON
MACR*DRV
DRV4TTY
MACR4DRV
HON4TTY END MACI
DRV4TTY ,*C
MACR4MON
DRV4TTY
MACR4MON
MON*TTY END MACI
DRV4TTY ,SEGHEN'
DRV*TTY
DRV4TTY
DRV*TTY
DRV-TTY
DRV*TTY
DRV4TTY
DRV*TTY
DRV-TTY

HAND;GATER
DRVI

DEFINED
DEFINE MOVERUN
MOVEILOG
IRUN DSK MOVE[IIHE1
MOVEIGATER
DRVI

DEFINED
DEFINE SETUP
IlIRUN
tITRACE
:1SET TYPE

EFINED
DEFINE ANDY
DRViLOG
IRUN DRIVERCH,JAHM
IISET TYPE
lITRACE
DRVIGATER

FINED
KIN

I IRUN
LOG
L

2/KKP
GED IN AS JOB 26

RUN DSK IIDRV[II,HE3
RUN OSK IIDRVEIIHEj

GATER
RO

TRACE

SET TYPE
RO
T LOGICAL NAME?

JPL Technical Memorandum 33-568 27

DRV4TTY
DRV*TTY
DRV*TTY
DRV4TTY UTILITY ROUTINES INITIALIZED
DRVoTTY *
TTY*MON CAMRUN
MACR*MON LOG
MACR*CAM L
MACR4CAM 2/KKP
MON4TTY CAM LOGGED IN AS JOB 27
CAM4TTY
MACR*MON RUN DSK CAMERACII,HE3
MACR*CAM RUN DSK CAMERACII,HE)
CAM-TTY
MACR*CAM GATER
MACR*DRV
MON*TTY END MACRO
CAM*TTY ,#C
CAM*TTY
TTY4MON EDGRUN
MACRAMON LOG
MACR£EDG L
MACR-EDG 2/KKP
MON*TTY EDG LOGGED IN AS JOB 28
CAMoTTY ,SEGMENT LOGICAL NAME?
EDG4TTY
MACRAMON RUN DSK EDGEtIIHE3
MACRoEDG RUN DSK EDGE[IIHEI
CAM*TTY DATXFRI RETRIEVING DATACISHY)l
EDG4TTY
MACREODG GATER
CAM*TTY DATXFRI RETRIEVING DATAt1,SHY32
MACR*DRV
MONoTTY END MACRO
TTY*MON CURRUN
MACRAMON LOG
MACRECUR L
MACRECUR 2/KKP
MON4TTY CUR LOGGED IN AS JOB 29
CAM4TTY DATXFRI RETRIEVING DATAtl,SHY33
EDG0TTY ,SEGMENT LOGICAL NAME?
CUR*TTY
MACRAMON RUN DSK CURVECII,HE2
MACR4CUR RUN DSK CURVECII,HE3
CAM*TTY DATXFRI RETRIEVING DATAC1,SHY)4
EDGOTTY ·
CUReTTY
MACR*CUR GATER
CAM*TTY CAM.UPDI POTS TOO NOISY (13 2
MACR4DRV
MON*TTY END MACRO
CUR*TTY ,tC

JPL Technical Memorandum 33-568

13)

28

CURoTTY
TTY4MON SIMRUN
MACR4MON LOG
MACR*SIM L
MACR4SIM 2/KKP
MON4TTY SIM LOGGED IN AS JOB 30
CAM*TTY ,,,TYPE Y TO TRY AGAINI
CUR4TTY ,SEGMENT LOGICAL NAME?
SIM4TTY
MACROMON RUN DSK SIMPLE£II,MHE
MACR*SIM RUN DSK SIMPLECIIHE3
SIM4TTY
MACR4SIM GATER
MACRoDRV
MON4TTY END MACRO
SIM*TTY ,eC
SIM*TTY
TTY4MON COLRUN
MACRoMON LOG
MACROCOL L
MACROCOL 2/KKP
MON4TTY COL LOGGED IN AS JOB 31
SIM*TTY ,SEGMENT LOGICAL NAME?
COL-TTY
MACR4MON RUN DSK COLORCIItHE]
MACR4COL RUN DSK COLORCIIHE]
SIM4TTY WARNINGI TWO PROGRAMS WITH ITEMS IN THEM
COL4TTY
MACRoCOL GATER
MACR4DRV
MON4TTY END MACRO
TTY4CAM
CAM4TTY CAM"ACTIVATED
COL4TTY ,SEGMENT LOGICAL NAME?
TTY*MON STAT
DRV4TTY 26 II IIDRV 2,KKP IOWG
CAMoTTY 27 CAM CAMERA 2,KKp IOWG
EDG*TTY 28 EDGE EDGE 2,KKP INTW
CUR*TTY 29 CURVE CURVE 2,KKP IOWC
SIM4TTY 30 SIMP SIMPLE 2,KKP IOWC
COLeTTY 31 COL COLOR 2,KKP IOWC
MON4TTY
TOTAL CORE a 191K UPPER SEGl18K MAX=6SK 12K
TTY.MON TRACE
TTY4MON SET TYPE
TTY4EUG DEBUG EDGE ON
EDG4TTY ·
TTY.DRV BLOBbGETEDGE(O)
DRVoTTY SENDING INSIDE NIL
49954733 MESSAGE TRACEI II EDGE INSIDE
DRV4TTY WAITING FOR RESPONSE INSIDE
EDG*TTY DAC SET AT 62 AD. 2711

JPL Technical Memorandum 33-568

28K
14K
35K
18K
33K
29K

010,383
010,683
010,316
010,200
010,333
010,383

LEF
LEFT

010,38
010,68
010,31
0z0.20
0:0,33
0:0,38

IvV

29

EDG4TTY DAC SET AT 1 AD. 1884
TTY*MON STAT
EDOGTTY 28 EDGE EDGE 2,KKp RUNO 35K
EDG-TTy DAC SET AT 31 ADs 1892
EOG4TTY DAC SET AT 46 ADO 1897
EDCGTTY DAC SET AT 54 AD. 2181
EDG4TTY DAC SET AT 50 ADO 1907
EDG*TTY DAC SET AT 52 AD. 2038
EDG4TTY DAC SET AT 51 ADo 1974
EOGDTTY AUTO TARGET SET AT 50
EDGCTTY REINIT TCLIP" 3 BCLIP= 4
EDGCTTY DAC SET AT 50 ADO 1903
EDG*TTY CLIPSET TCLIPs 7 BCLIP. 7
EDG4TTY XTENT OK
EDG4TTY KKPIFOUND MATCHING END
50150600 MESSAGE TRACEI EDGE II RESPONSE "FIND"
DRV*TTY WAITING FOR RESPONSE INSIDE
50158716 MESSAGE TRACEI EDGE II RESPONSE "INSIDE'
DRV4TTY ·
TTY4DRV BLOB*
DRV4TTY BLOB NOT RECOGNIZED OR ILLEGAL
DRV4TTY
DRV4TTY ·
TTY4DRV BLOB
TTY4DRV
DRV4TTY * (BLOB.1)
DRVoTTY *
TTY*ORV BLOB*INNER(BLOB)
ORV*TTY SENDING FINE BLOB.1
50207116 MESSAGE TRACEI II EDGE FINE IvV
DRVeTTY WAITING FOR RESPONSE FINE
50210266 MESSAGE TRACEI EDGE CURVE CURVEFIT FAR
EDG4TTY
EDG4TTY 000006 WORDS COLLECTED - GARCOL
EDG4TTY
EDOGTTY 000000 WORDS COLLECTED - GARCOL
EDGCTTY KKPIpOINT SEE

N
BEFORE

EDG4TTy DELETED
EDG4TTY CLIPSET TCLIP. 7 BCLIPx
EDG4TTY CLIPSET TCLIP. 7 BCLIP·
EDG4TTY CLIPSET TCLIP. 7 OCLIP.
EDG4TTY KKPILOOPING
EOCGTTY KKPI SCAN REVERSED
EDG-TTY CLIPSET TCLIP. 7 BCLIP.
EDG*TTY KKPI ACCOM FAILED
EDG4TTY KKPI OBJECT SEEN
EDG*TTY KK.PIHIT CURRENT OBJECT
EDGCTTY DAC SET AT 53 ADO
EDG*TTY DAC SET AT 50 AD.
EDG-TTY CLPSET TCLIPs 7 BCLIP.
EDG4TTY DAC SET AT 53 AD"
EDGOTTY DAC SET AT 56 AD·

JPL Technical Memorandum 33-568

014,616 014,30

3788 0

" 4028 *2

7
7
7

7

2124
1915

2125
2331

7

30

CLIPSET TCLIP.
KKPI OBJECT SEEN
KKPiHIT CURRENT OBJECT
KKPI SCAN REVERSED
KKPIHIT CURRENT OBJECT
DAC SET AT 53
DAC SET AT 50
CLIPSET TCLIPs
DAC SET AT 53
OAC SET AT 56
DAC SET AT 53
DAC SET AT 50

CLIPSET TCLIP.
CLIPSET TCLIP.

KKPI ACCOM FAILED
KKPI SCAN REVERSED
KKPILOOPING
DAC SET AT 53
DAC SET AT 56
KKPI HIT END OF PREVIOUS OBJECT
KKPI SCAN REVERSED
KKPIHIT CURRENT OBJECT
KKPI TRY FOR MORE
KKPIHIT CURRENT OBJECT

MESSAGE TRACEI EDGE Ci
DAC SET AT 53
CLIPSET TCLIPs
KKPI ACCOM FAILED
KKPI OBJECT SEEN
KKPIHIT CURRENT OBJECT
KKPI SCAN REVERSED
KKPIHIT CURRENT OBJECT
KKPIPOINT SEEN BEFORE
DELETED
DAC SET AT 56
DAC SET AT 53

MESSAGE TRACEI
KKPIPOINT SEEN BEFORE
DELETED
DAC SET AT
DAC SET AT
3 _ MESSAGE TRACEI
DATA
HUNG
TYPE

HUNG
TYPE
HUNG
TYPE

MISSED - TV
DEVICE AD
C<CR> TO CONTINUE,

DEVICE AD
C<CR> TO CONTINUE,
DEVICE AD
C<CR> TO CONTINUE,

EDGE

EDGE

C

56
53

C

4 BCLIP4

ADO
AD=

7 BCLIPu
AD"
AD=
AO'
ADs

7 BCLIPu
7 BCLIPa
7 BCLIPI

ADS
AD=

URVE CURVEFIT FAR
AD=
2 BCLIP.

AD=
ADa

URVE CURVEFIT FAR

ADO
ADo

URVE CURVEFIT FAR

2130
1928

2128
2320
2130
1922

2130
2327

2132

2327
2132

2336
2131

ANYTHING ELSE <CR> TO RETRY

ANYTHING ELSE <CR> TO RETRY

ANYTHING ELSE <CR> TO RETRY

JPL Technical Memorandum 33-568

6

7

7
7
7

EDG*TTY
EOCGTTY
EDG4TTY
EDG4TTY
EDG4TTYEOG*TTY
EDG4TTY

EDG4TTY
EDG4TTY
EDG*TTY
EDG*TTY
EDG*TTY
EDG4TTY

EDG4TTY
EDG4TTY
EDG4TTY
EDG4TTY
EDG4TTY
EDG4TTY
EDG*TTY
EDG*TTY
EDG4TTY
EDG4TTY
EDG4TTY
50416033
EDGeTTY
EOG4TTY
EDG4TTY
EDG4TTY
EDG4TTY
EOG4TTY
EDG-TTY
EOG4TTY
EDG4TTY
EOG"TTY
EDG-TTY
EDG4TTY

EDG4TTY
EDG4TTY
EDG4TTY
EDG4TTY
50492933
EOG4TTY
EDG4TTY
EDG4TTY
TTYoEDG
EDG*TTY
EDG4TTY
EOG4TTY
EDG*TTY
TTY-EDG

4

31

EODGTTY HUNG DEVICE AD
EDGeTTY TYPE C(CR> TO CONTINUE, ANYTHING ELSE
EDG4TTY HUNG DEVICE AD
EDG*TTY TYPE C<CR> TO CONTINUE, ANYTHING ELSE
TTY4EDG C
EDG4TTY DAC SET AT 50 AD=
TTY4MON S
TTY*EDG S
EDGCTTY
50586750 MESSAGE TRACEI EDGE II RESI
EDGCTTY *
DRV4TTY '
TTYEDOG BLOB
EDG4TTY COM ERR BLOB
EDG4TTY *
TTY*DRV BLOB
ORV4TTY a ()
DRV4TTY *
TTY4EDG REJECT -1
EDG*TTY REJECT 4028 -1
EDG"TTY *
TTY4EDG BLOB8GETEDGE(1)
EDG*TTY COM ERR BLOB*GETEDGE¢1)
EDG*TTY *
TTY=DMoV 0LOBtGETG DGE(1)
DRV4TTY SENDING FIND NIL
50639533 MESSAGE TRACEI II EDGE FIN
DRV4TTY WAITING FOR RESPONSE FIND
EDOGTTY COLOR WHEEL IS HUNGI RETRY OR CONTINUE
TTY4EOG R
EDGoTTY DAC SET AT 1 ADx 1883
EDG*TTY DAC SET AT 48 ADs 1886
EDG4TTY DAC SET AT 49 AD' 1897
EDG*TTY DAC SET AT 50 AD" 1918
EDG*TTY AUTO TARGET SET AT 50
EDGCT Y REINIt TCLIP. 3 BCLIP. 4
EDG4TTY PARITY ERROR, IN YOUR CORE IMAGEI
EDCG*TTY LOCs 7020
EDCGTTY 'C
EDG4TTY
EDCGTTY ,7
EDG*TTY ERROR IN JOB 28
EDG*TTY ILL MEM REF AT USER 7020
EDGOTTY *C
EDG-TTY
TTYMHON S
TTY*EOG S
EDG4TTY ,tC
EDG*TTY
EDGCTTY
EDG.TTY DAC SET AT I ADs 1051
EDCGTTY DAC SET AT 25 AD. 1872

<CR> TO RETRY

<CR> TO RETRY

e1

PONSE "FINE" 4028 -1

O IvV

E (R OR C)

JPL Technical Memorandum 33-56832

EDG4TTY DAC SET AT 37 AD= 1883
EDG4TTY DAC SET AT 50 ADO 1918
EDG4TTY AUTO TARGET SET AT 50
EDG4TTY REINIT TCLIP= 3 BCLIP=
EDOGTTY ?
EDG*TTY ERROR IN JOB 28
EDG4TTY ILL MEM REF AT USER 7020
EDG*TTY 'C
EDG*TTY
TTY4MON RUN EDGEtII,HE3
TTY4EDG RUN EDGE[II,HE3
EDG4TTY ,tC
EDG-TTY
EDG4TTY ,SEGMENT LOGICAL NAME?
TTY*EDG GATER
EDG4TTY DAC SET AT I AD= 1847
EDG-TTY DAC SET AT 25 ADt 1878
EDG-TTY DAC SET AT 37 ADr 1885
EDG4TTY DAC SET AT 50 AD= 1918
EDG4TTY AUTO TARGET SET AT 50
EDG4TTY REINIT TCLIP: 3 BCLIP=
EDG*TTY XTENT OK
EDG4TTY
EDG4TTY 000000 WORDS COLLECTED - GARCOL
EDG4TTY KKPIFOUND MATCHING END
50821600 MESSAGE TRACEI EDGE II RE
50822183 MESSAGE TRACEI EDGE II RE
DRV4TTY WAITING FOR RESPONSE FIND
EDG4TTY e
DRV'TTY *
TTY4DRV BLOB&CURVE(BLOB)
DRV4TTY SENDING FIT BLOB°2
50832150 MESSAGE TRACEI I EDGE FI
ORV-TTY WAITING FOR RESPONSE FIT
50834033 MESSAGE TRACEI EDGE CURVE
50841783 MESSAGE TRACEI EDGE II RE
DRV4TTY *
TTY*DRV REJe
DRV4TTY *
TTY-DRV OBJ-SIMPLE(BLOB,(ALL),REJ)
DRV-TTY SENDING SIMP.FIT BLOB_2
50862433 MESSAGE TRACEI 11 SIMP SI
SIM4TTY I AM NOW IN SIMPLE
SIM-TTY NUMBER OF CORNERS IS 6
SIM4TTY ITS'S A RECTANGULAR PARALLELEPIPED,
SIM-TTY INSTANCE TRANSFORM FROM SIMPLE
SIM-TTY -,957483 -,268490 ,000000
SIM4TTY ,288490 -,957483 .000000
SIM4TTY ,000000 ,000000 1,00000
SIM-ITY ,000000 ,000000 ,300000
DRV*TTY *
TTY4DRV DISPOBJ(OBJ,I)

4

4

SPONSE "FIND" 3785 0
SPONSE "FIND" 4028 -1

T IvV

CURVE.FIT FAR
SPONSE "FIT" 3785 0

MPFIT ItV 0 FLDIVR

27,2563
27,6449
,625000
1,00000

JPL Technical Memorandum 33-568 33

DRV4TTY : *** NO VALUE **~
DRV4TTY X

TTY4MON RESET DI
TTY4DRV COLFIND(OBJ)
DRV4TTY COLFIND NOT RECOGNIZED OR ILLEGAL
DRV4TTY OBJ)
DRV4TTY *
TTYDORV COL-FIND(OBJ)
DRV4TTy COLFINO NOT RECOGNIED OR ILLEGAL
DRV4TTY OBJ)
DRV*TTY *
TTY*MON UPDATE

34 JPL Technical Memorandum 33-568
NASA - JPL - Coml., L.A., Calif.

